
 

 
 
 
 

APPENDIX D 
 

ANALYTICAL EXPRESSIONS INCORPORATING RESTRAINT OF 
PRESSURE-INDUCED BENDING IN CRACK-OPENING 

DISPLACEMENT CALCULATIONS 
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D. 1  Introduction 
 
Among the factors that are important to leak-
before-break (LBB) of nuclear piping systems is 
an effect called restraint of pressure-induced 
bending on crack-opening displacement (Ref. 
D.1).  As shown in Figure D.1, the existence of a 
through-wall circumferential crack will result in 
a bending moment at the crack region for a pipe 
loaded axially from pressure, due to the 
eccentricity from the neutral axis in the cracked 
plane versus the center of the uncracked pipe.  
This pressure-induced bending (PIB) causes an 
unrestrained pipe to rotate, thereby resulting in 
an increase in crack-opening displacement. 
 
In a real piping system, the ends of the pipe can 
be restrained from free rotation, reducing the 
degree of pressure-induced bending.  Examples 
of the pipe restraints include nozzles, elbows, 

pipe hangers, and other pipe-system boundary 
conditions.  The degree of the restraint also 
depends on the geometry of the pipe system.  In 
general, the restraint of end rotation is a function 
of: 
 
• the magnitude of the load (elastic or plastic 

effects), 
• the length of the crack,  
• the pipe geometry, i.e., R/t ratio, and  
• the boundary conditions of the pipe on either 

side of the crack location. 
 
The restraining effect on PIB in general results 
in an increase in the load-carrying capacity of 
the cracked pipe, but a decrease in the crack-
opening displacement when compared with that 
of the same cracked pipe free from the restraints 
(Ref. D.2).  This is illustrated in Figure D.2.   
 

 
 

 
Figure D.1  Rotation of unrestraint pipe due to pressure induced bending.  The rotation of the pipe 

is magnified by factor of 2. 

 
 

 
Figure D.2  Reduction of COD in pressure-induced-bending of a restrained pipe.  An asymmetric 

pipe restraint condition is shown.  Displacement magnified by a factor of 5. 

 
 
The beneficial load-carrying capacity increase 
has a corresponding decrease in the cracking-
opening area for leak detection that is 
detrimental to LBB.  The trade-offs between the 
two effects appear to be case-dependent, and are 
influenced by the pipe diameter and crack length 
(Ref. D.3). 
 
The common analysis practice for LBB is to 
determine the center crack-opening 

displacement (COD) by using the solution for an 
end-capped vessel.  The so-called end-capped 
vessel model, although relatively simple to 
analyze, allows the ends of the vessel to freely 
rotate.  Furthermore, it ignores the restraint to 
the ovalization at the crack plane imposed by the 
restraining end of the piping system.  Therefore, 
the end-capped vessel model may over-estimate 
the COD more than if the pipe is not allowed to 
rotate in the real world piping systems.   
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In this program, a set of analytically based 
expressions has been developed.  These 
expressions can be used to correct the end-
capped COD solutions to account for the effect 
of piping restraint on PIB.  The expressions are 
given in terms of the normalizing factor rCOD, 
defined as: 
 

unres

res
COD COD

CODr =  (D.1) 

 
where CODres is the COD value of a crack in a 
restrained piping system, and CODunres is the 
COD value in the corresponding unrestrained 
pipe.  rCOD is also called the normalized COD.  
Solutions for CODunres for various pipe and 
crack geometries are available in many 
publications in open literature.  They can also be 
obtained rather easily using the end-capped 
vessel models.  Once the CODunres is known, the 
COD of a crack in a restrained pipe can be 
determined with the aid of the normalizing 
factor rCOD derived in this work: 
 

unresCODres CODrCOD ⋅=  (D.2) 
 
The analytical expressions obtained in this work 
were based the results of the round-robin finite 
element (FE) calculations of COD values that 
were conducted earlier in this BINP program 
(Ref. D.4).  As such, the expressions of the 
normalizing factor are limited, and should be 
used within the range in which the expressions 
were derived. 
 
D. 2  Problem Statement 
 
Due to the bending and the rotation of a cracked 
pipe, the crack-opening displacement is not 
uniform through the wall of the pipe – the crack-
opening displacement at the inner surface of the 
pipe can be different from that at the outer 
surface.  In this program, the term COD is 
specifically referred to as the center crack 
opening displacement at the mid-thickness of a 
through-wall circumferential crack in a straight 
pipe.   
 
The cracked-pipe geometry investigated in this 
program is illustrated in Figure D.3.  The basic 

geometric variables include the pipe outside 
diameter (OD), pipe mean radius to thickness 
ratio (Rm/t), half crack length (θ), and the 
restraint length – the distance between the 
restraint plane and the crack plane (LR1, LR2).  
The restraint is called symmetric if the restraint 
lengths from both ends are equal (LR1=LR2=LR); 
otherwise, it is called asymmetric restraint.  
These variables are also given in Figure D.3. 
 
The basic assumptions made in both the round-
robin FE analyses and the derivation of the 
analytical expressions are: 
 
• The deformation is linear elastic.  The 

elastic modulus is 200 GPa (29,000 ksi), and 
the Poisson’s ratio is 0.3. 

• The displacement of the pipe is small – both 
the strain and the rotation of a cracked pipe 
from PIB are small.  As such, the geometric 
nonlinearity effects due to large rotation and 
large strain are ignored.  Also ignored is the 
change of loading directions associated with 
the deformation process. 

• At the crack plane, the pipe is allowed to 
move vertically and horizontally (rotation in 
the crack plane and ovalization are not 
restricted), but it was pinned of any axial 
displacement in the ligament. 

• For the restrained pipe, both ends of the pipe 
are restrained from rotation and ovalization, 
and only the axial displacement is allowed at 
the pipe end.  This represents the most 
severe restraint conditions in a piping 
system. 

• For the reference unrestrained pipe, the end-
capped vessel model is assumed – the ends 
of the pipe are allowed to move freely.  
Theoretically, the unrestrained pipe should 
be infinitely long.  The results from the 
round-robin FE calculations show that, if the 
pipe length is greater than 20 times of the 
pipe diameter (LR > 20 OD), the pipe ends 
will then have negligible effect on the 
deformation in the vicinity of the cracked 
plane and the resultant COD value. 

• An axial force is applied at the pipe end, 
passing through the central axis of the pipe.  
The applied load values are arbitrarily 
chosen because; (1) the deformation is  
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Figure D.3  Cracked-pipe geometry 

 
 
 

linear-elastic and confined to the small 
displacement condition, and (2) the COD 
results are normalized with respect to the 
unrestrained COD. 

• There is no pressure on the crack faces, and 
no internal pressure is present. 

 
Figure D.4 depicts the boundary and loading 
conditions used in this investigation for the 
symmetrically restrained cases (L1=L2).   
 
D.2.1  Round-Robin FE COD Analyses 
 
The BINP round-robin FE COD analysis matrix 
included a total of 144 cases covering a wide 
range of pipe geometries and restraint conditions 
(Ref. D.4). Table D.1 and Table D.2 summarize  

the analysis matrix of the round-robin FE 
calculations.  Details of the round-robin analysis 
can be found in Reference D.4.  The results from 
the round-robin analysis were used to validate 
the analytical expressions developed in this 
work. 
 
D.3  Development of Analytical Expressions 
 
The development of the analytical expressions 
for restraint of pressure induced bending was 
based on the recent work by Miura (Ref. D.5).  
Miura’s expression was expanded to cover a 
wider range of R/t ratios for a symmetrically 
restrained pipe system.  New expressions were 
developed for the asymmetric restraint 
conditions. 

 

2θ 
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Figure D.4  Loading and boundary conditions of a symmetrically restrained pipe 

 
 

Table D.1  Analysis matrix for symmetric restraint cases in round-robin FE calculations 
 OD 

(mm) 
Rm/t Axial Force

(kN) 
Half Crack Length Restraint Length 

(L/OD) 
Case 1a 711.2 10 50,000 π/8 π/4 π/2 1 5 10 20 
Case 1b 323.85 10 5,000 π/8 π/4 π/2 1 5 10 20 
Case 1c 114.3 10 500 π/8 π/4 π/2 1 5 10 20 
Case 2a 711.2 5 50,000 π/8 π/4 π/2 1 5 10 20 
Case 2b 711.2 20 50,000 π/8 π/4 π/2 1 5 10 20 
Case 2c 711.2 40 50,000 π/8 π/4 π/2 1 5 10 20 

 
 

Table D.2  Analysis matrix for asymmetric restraint cases in round-robin FE calculations 
 OD 

(mm) 
Rm/t Axial Force 

(kN) 
Half Crack Length LR2

/OD LR1
/OD 

       5 10 20  
Case 3a 711.2 10 50,000 π/8 π/4 π/2 X X X 1 

 711.2 10 50,000 π/8 π/4 π/2  X X 5 
 711.2 10 50,000 π/8 π/4 π/2   X 10 

Case 3b 323.85 10 5,000 π/8 π/4 π/2 X X X 1 
 323.85 10 5,000 π/8 π/4 π/2  X X 5 
 323.85 10 5,000 π/8 π/4 π/2   X 10 

Case 3c 114.3 10 500 π/8 π/4 π/2 X X X 1 
 114.3 10 500 π/8 π/4 π/2  X X 5 
 114.3 10 500 π/8 π/4 π/2   X 10 

 



D-5 

D.3.1  Symmetrically Restrained Pipe 
 
Miura’s approach is schematically illustrated in 
Figure D.5.  Miura treated the deflection of a 
cracked pipe due to pressure-induced bending as 
an elastic beam problem.  The existence of the 
crack is represented by a beam section of 
reduced thickness in the vicinity of the cracked 
plane.  The end-restraint of the pipe makes the 
deflection of the beam statistically indeter-
minate.  He then makes the analogy that the 
COD and pipe rotations are linearly related, 
hence the ratios of the restrained to the unre-
strained rotation is the same as the ratio for the 
restrained to unrestrained COD.  Such an 
approach has also been used for developing 
J-estimation schemes in the past.   
 
For symmetric restraint, Miura derived the 
following equation for the normalizing factor 
(normalized COD), rCOD:  
 

( )
4
θb

mR

mR
COD IDL

DLr
+

=  (D.3) 

 
where Dm is the mean diameter of the pipe, LR 
the restraint length, and θ the half-crack angle.  
Ib(θ, Rm/t) is an integral of the compliance term, 
Fb(θ, Rm/t), in the stress intensity factor 
definition, KI: 
 
 ( ) ( ) θθθθ dtRFtRI mbmb ∫= /,4/, 2  

( )tRFRK mbmbI /,θθπσ=   (D.4) 
 
According to Equation D.3, rCOD is related to the 
normalized geometric parameters: 
 
• normalized restraint length LR/Dm, 
• normalized pipe thickness Rm/t, and  
• normalized half crack length θ/π. 
 
Such a parametric relationship simplifies the 
application of the analytical expressions – it is 
unnecessary to distinguish the results from pipes 
with different diameters or restraint lengths, 
provided that the normalized parameters are the 
same.  Indeed, the results from the round-robin 

FE calculations, as illustrated in Figure D.6, 
support the parametric relationship. 
 
Miura used the following equations to evaluate 
the function Ib(θ, Rm/t): 
 

( ) ( )
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where the coefficients Ab, Bb, and Cb are taken 
from Klecker et al.’s curve-fitting of Sander’s 
solution for the stress intensity factor (Ref. D.6).  
These original coefficient are given in 
Equation D.6. 
 
In this study, it was found that the coefficients 
used by Miura, as given in Equation D.6, are 
only valid for Rm/t ratios up to 16.  Thus, these 
coefficients were revised to cover a wider range 
of Rm/t ratios up to 40, again through curve-
fitting the Sander’s solution.  The revised 
coefficients are given in Equation D.7. 
 
The differences in Ib(θ, Rm/t) are compared in 
Figure D.7.  Clearly the discrepancies are 
significant for Rm/t values above 20. 
 
Figures D.8 though Figure D.11 provide com-
parisons of the rCOD from the analytical expres-
sions and the FE calculations for all the sym-
metric restraint cases in the round-robin analysis 
matrix.  The analytical solutions are shown as 
solid lines, whereas the FE results are shown as 
various points in these figures.  Clearly, the 
analytical expression by Miura (Equation D.3), 
combined with the revised coefficients (Equa-
tion D.7), is adequate for all the cases investi-
gated in the present study.  For comparison, 
Figure D.12 shows the analytical solution using 
the original coefficients by Miura for Rm/t = 40.  
The use of the original coefficients severely 
underestimates the values of rCOD, especially for 
the cases where the crack is long.  
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Figure D.5  Beam model representing deformation of cracked pipe under restraint (Ref. D.5) 
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Figure D.6  Normalized COD for different pipe diameters (Ref. D.4) 
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Figure D.7  Comparison of the Ib(θ) values for different curve-fitting coefficients 
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Figure D.8  Comparison of the normalizing factor between the analytical expression  

and the FE calculations.  Symmetric restraint, Rm/t=5 
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Figure D.9  Comparison of the normalizing factor between the analytical expression  

and the FE calculations.  The FE results from different round-robin participants  
are indicated by different letters.  Symmetric restraint, Rm/t=10 
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Figure D.10  Comparison of the normalizing factor between the analytical expression  

and the FE calculations.  Symmetric restraint, Rm/t=20 
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Figure D.11  Comparison of the normalizing factor between analytical expression  

and the FE calculations.  Symmetric restraint, Rm/t=40 

 
 
 

 
Figure D.12  Comparison of the normalizing factor between the analytical expression and the FE 
calculations.   Symmetric restraint, Rm/t=40.  NUREG/CR-4572 curve-fitting of coefficients of Ab, 

Bb, and Cb 
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D.3.2  Asymmetrically Restrained Pipe 
 
Using the same beam approach for the sym-
metric restraint case, Miura derived the follow-
ing solution for the asymmetrical restraint case: 
 

( )
4
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θb
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where [LR/Dm]eq is the so-called equivalent 
normalized restraint length: 
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As shown in Equation D.9, the equivalent nor-
malized restraint length is the harmonic average 
of the normalized restraint lengths LR1 and LR2. 
 
Comparisons with the round-robin FE results 
reveals that the Miura’s solution tends to 
underestimate the restraint effect if the restraint 
length is short, and overestimate if the restraint 
length is long.  The discrepancy is especially 
noticeable if the crack is long and the asym-
metry of the restraint length is large, as shown in 
Figure D.13.   

It appears that the inadequacy of Miura’s 
solution for the asymmetric cases is related to 
the harmonic property of the equivalent 
normalized restraint length.  To illustrate this 
point, rearranging Equation D.9 yields: 
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If LR2 is the longer restraint length of the two, 
then  
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This means that, regardless the length of the 
longer restraint LR2, the harmonic equivalent 
normalized restraint length cannot be greater 
than twice of the shorter restraint length.  The 
variation of the harmonic equivalent restraint 
length as function of the LR2/LR1 is shown in 
Figure D.14. 
 

 
Figure D.13  Comparison of Miura’s analytical solution with FE results for asymmetric restraint 
cases.  Letters indicate the FE results from different round-robin participants.  Rm/t=10, θ=π/2 
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Figure D.14  Equivalent normalized restraint length as function of the ratio of LR2/LR1 

 
 
Now consider a special case in which a pipe is 
restrained only at one end, at a distance of one 
Dm from the crack plane (i.e., LR1/Dm = 1 and 
LR2 →∞).  Equation D.10 becomes: 
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Hence, the harmonic equivalent normalized 
restraint length can only reach 2 even if the pipe 
is restrained only at one end.  Further assuming 
Rm/t=10 and θ=π/2, the resultant rCOD is 0.286, 
as shown in Figure D.13. 
 
The same case was also analyzed using FE 
approach.  The model is shown in Figure D.15.  
The restraint boundary condition was applied at 
LR1/Dm = 1 from the crack plane at the left end 
of the pipe.  The length of the pipe on the right 
side of the crack was set at 20Dm, but the end 
was left unrestrained to allow free rotation and 
ovalization (end-capped condition).  This 
effectively represents an infinitely long restraint 
length at the right side of the crack (LR2/Dm→∞).  

The rCOD from the FE model is 0.93, more than 
three times higher than the value obtained with 
the harmonic equivalent restraint length.  
Clearly, the harmonic expression of the 
equivalent restraint length penalizes the 
contribution of the longer pipe restraint length, 
and thus is inadequate if the restraint length of 
the longer pipe is relatively long.   
 
More importantly, the FE analysis suggests that 
the restraint effect is nearly negligible (rCOD →1) 
in a one-side restrained pipe.  This means that 
 

∞→≠∞→ 21 0 RReq LandLifL  (D.13) 
 
Therefore, an improved definition of Leq is 
required to improve the accuracy of the 
analytical expression of rCOD for the asymmetric 
restraint conditions.  However, derivation of a 
theoretically sound closed-form analytic  Leq 
definition was found to be difficult. 
 
A different approach was then adopted in this 
work – a correction function was used to relate 
the solution for asymmetrically restrained pipe 
to symmetrically restrained pipe.  The correction 
function is proposed to take the following form: 
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where rCOD, asym is the normalizing factor for the 
asymmetrically restrained pipe.  (rCOD, sym)LR1 is 
for the corresponding symmetrically restrained 
pipe, evaluated using Equation D.3 with the 
shorter restraint length LR1.  Lref is a reference 
restraint length, representing the restraint length 
above when the restraint effect is negligible.   
 
The correction function is expected to take the 
shape as illustrated in Figure D.16, and has the 
following properties: 
 

12,, RRsymCODasymCOD LLifrr ==  
and  (D.15) 

refRCOD LLifr →→ 21  
 
Lref is the only unknown variable of the 
correction function.  Lref is expected to be a 

function of R/t ratio and half crack length.  Its 
values can be determined through curve-fitting 
of the FE calculation results.  In this work, 
curve-fitting the round-robin FE calculations 
results in the second-order polynomial equation 
for Lref, given in Equation D.16.  The equation is 
plotted in Figure D.17. 
 
The correction function for the asymmetrically 
restrained pipe is validated using the round-
robin FE results.  They are shown in Figrue D.18 
to Figure D.20.  Miura’s solutions for the 
asymmetric case with the harmonic equivalent 
restraint length are also shown in the figures for 
comparison.  The correction function clearly 
improves the accuracy of the analytical 
expressions of the normalizing factor. 
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Figure D.15  PIB of a cracked pipe with one-sided restraint.  θ=π/2, Rm/t=10, LR1/Dm=1, LR2/Dm→∞ 
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Figure D.16  General form of the correction function 
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Figure D.17  Reference restraint length as function of crack size  (Rm/t=10) 
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Figure D.18  Verification of analytical expression for asymmetric restraint cases  (Rm/t=10, θ=π/8) 
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Figure D.19  Verification of analytical expression for asymmetric restraint cases  (Rm/t=10, θ=π/4) 
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Figure D.20  Verification of analytical expression for asymmetric restraint cases  (Rm/t=10, θ=π/2) 

 
D.4 Pipe Stiffness 
 
In the previous sections of this appendix, the 
expression for the normalizing factor rCOD 
related the crack-opening displacement (COD) 
of restrained pipes to the COD for unrestrained 
pipes.  The variable rCOD is expressed in terms of 
the restraint length to mean diameter ratio, 
LR/Dm.  Although conceptually easy to 
understand, the restraint length is a difficult 
parameter to determine directly.  Restraint can 
occur in many forms, from pipe bends and 
curves to hinges and supports, all of which affect 
the restraint length in an unpredictable manner.  
Therefore, in order for the equations for the 

reduced COD to be practical, it is necessary to 
express LR/Dm in terms of an alternate variable.   
Pipe stiffness is a parameter that is readily 
calculable in practice using a finite element 
analysis model.  For the crack opening 
displacement problem, pipe stiffness k can be 
defined as the “relative moment for a unit kink 
angle” (see Figure D.21), or  
 
 θ/Mk = ,  (D.17) 

where  

 M = applied moment, and 
 θ = the bending angle. 
 

Symmetric Solution 

Symmetric Solution 
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By deriving expressions relating the pipe stiff-
ness to the normalized restraint length LR/Dm, it 
is possible to utilize the rCOD equations in 
practical situations. 

 
Figure D.21  Moment about a hinge; bends 
and various supports affect the restraint 
lengths of the pipe about the hinge 
 
D.4.1 Case Matrix 

The following work is based on a matrix of 
cases very similar to the ones presented in the 
previous sections.  For the symmetric analysis, 
the cases consisted of the matrix of Table D.1, as 
well as the matrix of Table D.3 (below).  Note 
that the additional cases in Table D.3 were not a 
part of the Round-Robin FE analyses or used to 
derive the rCOD equations.  Rather, they were 
additional cases used in the derivation of the 
equations in the following sections, and allowed 
for a much more comprehensive analysis of the 
concept of pipe stiffness.  

The rCOD equations for asymmetric restraint 
cover a much narrower range of data. Specific-
ally, the expression for the reference restraint 
length (Eq. D.16) is valid only when Rm/t = 10 
and 1/8 < θ/π < ½.  The case matrix of Table D.2 
adequately covers this limited range, and 
therefore only the matrix of Table D.2 is used to 
develop the LR/Dm versus k relationship for the 
case of asymmetric restraint. 

 

 

D.4.2  The ANSYS Model 

In order to determine the pipe stiffness associ-
ated with various restraint lengths, a beam-type 
finite element model of a pipe was created with 
the ANSYS finite element program.   The model 
elements were the same as the “pipe” elements 
that would be used in a plant piping stress 
analysis.   The pipe was restrained at either end, 
and a hinge was created about which a moment 
could be applied (see Figure D.22). 

In order to use the hinge model shown in Fig-
ure D.22, one has to settle on precisely how the 
analysis is to be performed.  The hinge concept 
is quite simple, but there are subtle details that 
need to be defined.  It was determined that the 
most rational way to proceed is to consider a 
separate “left” and “right” stiffness correspond-
ing to L1 and L2 by finding the stiffness for the 
respective side assuming that the rotation for the 
opposite side is fixed at zero.  This was, by no 
means, the only way to perform the stiffness 
analysis, but it had the desirable effect of more 
or less uncoupling the “left” and “right” 
rotations. 

Following this idea, the steps for calculating the 
hinge stiffnesses for a pipe are as follows: 

1. Put a hinge at the point of interest with 
the axis of rotation in the correct 3D 
orientation.  Typically, this is most 
easily done using local coordinates at 
the point of interest. 

2. Fix the rotation of the “left” side of the 
hinge at zero in the local coordinate 
system. 

3. Apply a unit moment to the “right” side 
of the hinge and recover the rotation.  
The moment M and the recovered 
rotation θ2 must both be in the local 
coordinate system. 

4. Repeat steps 2 to 4 replacing “left” with 
“right” and vice versa in order to 
determine θ1. 
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Table D.3  Additional Symmetric Cases used in Pipe Stiffness Analysis 

 
 OD 

(mm) 
Rm/t Half Crack Length 

(radians) 
Restraint Length 

(normalized to the outer diameter) 
L/OD 

Case 4.a 526.13 15 π/8 π/4 π/2 1 5 10 20 
Case 4.b 465.23 15 π/8 π/4 π/2 1 5 10 20 
Case 4.c 75.00 15 π/8 π/4 π/2 1 5 10 20 
Case 5.a 465.23 5 π/8 π/4 π/2 1 5 10 20 
Case 5.b 465.23 20 π/8 π/4 π/2 1 5 10 20 
Case 5.c 465.23 40 π/8 π/4 π/2 1 5 10 20 
Case 6.a 200.00 10 π/8 π/4 π/2 1 5 10 20 
Case 6.b 500.00 10 π/8 π/4 π/2 1 5 10 20 
Case 6.c 600.00 10 π/8 π/4 π/2 1 5 10 20 
Case 7.a 200.00 15 π/8 π/4 π/2 1 5 10 20 
Case 7.b 500.00 15 π/8 π/4 π/2 1 5 10 20 
Case 7.c 600.00 15 π/8 π/4 π/2 1 5 10 20 
Case 8.a 711.20 10 π/8 π/4 π/2 1 5 10 20 
Case 8.b 711.20 15 π/8 π/4 π/2 1 5 10 20 
Case 8.c 711.20 25 π/8 π/4 π/2 1 5 10 20 
Case 9.a 465.23 10 π/8 π/4 π/2 1 5 10 20 
Case 9.b 465.23 15 π/8 π/4 π/2 1 5 10 20 
Case 9.c 465.23 25 π/8 π/4 π/2 1 5 10 20 

 
 

 
Figure D.22  Schematic of ANSYS pipe model used to determine stiffness values given various 

restraint lengths 

 
5. For a case of symmetric restraint, divide 

the moment M by the difference of the 
rotations |θ1| - |θ2| in order to determine k 
=| M/(|θ1| - |θ2|)|.  For cases of asym-
metric restraint, determine separate 
stiffness values for the two sides of the 
hinge as follows: k1 =| M/θ1 | and k2 
=| M/θ2 |. 

 
The procedure outlined above can be applied as 
easily to a 3D pipe system with a crack in any 
orientation as it can be to the simple 2D model 
shown in Figure D.22. 

 
D.4.3 Pipe Stiffness in Cases of Symmetric 
Restraint 
 
After running the ANSYS model to determine 
the stiffnesses for the cases in Tables D.1 and 
D.3, plots of the restraint length in terms of pipe 
stiffness were generated for each case.  From the 
plot of Case 1.a (see Figure D.23), it is evident  
that LR/Dm and k are related by a power law 
function.  Each case produced a similar plot, 
with a different constant in front of the power 
function.  It was speculated that this constant 
was in some way related to the second moment 
of area of the pipe, I.  Plotting the I of a pipe  

L1 L2 

M
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Figure D.23  Plot of restraint length in terms of stiffness for symmetric Case 1;   
k and LR/Dm are related by a power function multiplied by a constant 

 
 

Figure D.24  Plot of constant C in terms of second moment of area I for all symmetric cases   
(The second moment of area is linearly related to the constant C) 
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33.1/ −= CkDL mR

against the required constant, it was clear that 
the constant is related linearly to I (see 
Figure D.24).   
 
For cases of symmetric restraint, the following 
equation was developed relating pipe stiffness 
and the normalized restraint length, 
 

                                                       ,             (D.18) 
 
 
where LR/Dm is the normalized restraint length 
and k is the pipe stiffness in N⋅m/rad.  C is a 
constant obtained from the following equation 
 

                                                 (D.19) 
 
where I is the second moment of area of the pipe 
cross section (m4), equivalent to 
 
 

                                                        (D.20) 
 
The beam-type finite element analyses shows 
that the behavior of pipes with an I less than 10-4 
m4 does not fit the form of Equations D.18 and 
D.19 when subjected to a bending moment, and 
therefore must be related in a different manner 
to the restraint length.  For instance, Cases 1.c 
and 4.c, where the outer diameters are 0.1143 m 
(4.5 inches) and 0.075 m (3.0 inches), 
respectively, and the thicknesses are both less 
that 10 mm (0.4 inches), show significant 
deviation from the expected behavior.  
Consequently, Equations D.18 through D.20 are 
accurate only when the second moment of area 
is greater than or equal to 10-4 m4 (240 inch4). 
 
The plot in Figure D.25 shows the comparison 
between the normalizing factor rCOD when 
calculated using the parametric values of LR/Dm 
and the stiffness-based values of LR/Dm resulting 
from use of the above equations.  Error appears 
to increase significantly as the second moment 
of area of the pipe cross-section approaches the 
range limit of 10-4 m4 (240 inch4).  

 

D.4.4 Pipe Stiffness in Cases of Asymmetric 
Restraint 
 
In the case of asymmetric restraint, the equations 
relating the pipe stiffness to the restraint length 
have the same form as in symmetric restraint 
with a slightly different scale.  The two restraint 
lengths can be calculated using the equations 
 

11.1
111 / −= kCDL mR  and 12.1

222 / −= kCDL mR .                           
(D.21) 

Again, C1 and C2 are constants, and are depend-
ent on the pipe’s second moment of area as 
follows: 
 

.                           
(D.22) 

 
 
In this case, k1 and k2 represent the stiffness of 
the pipe corresponding to the rotation of L1 and 
L2, respectively.  As in the symmetric cases, the 
differences between parametric and stiffness-
based LR/Dm values when I < 10-4 m4 (240 inch4) 
are significant, and the equations should not be 
utilized in this range. 
 
Figures D.26 and D.27 (below) illustrate the 
power relationship between LR1/Dm and LR2/Dm 
and k, and the comparison between rCOD values, 
respectively. 
 
D.5  Application of Equations 
 
After developing the equations for rCOD in terms 
of pipe stiffness, it was important to apply them 
to some plant piping cases to see what effect the 
revised COD values have on leak rates for actual 
plant piping applications.  This gives the user an 
idea of the importance of the pressure-induced 
bending effect in the calculation of crack-
opening displacement values for a plant LBB 
application. 
 
A finite element model of a 3-loop 
Westinghouse-style PWR nuclear power plant 
was developed, and hinges were placed at 
eighteen critical locations per the procedure 
given in Section D.4.2.  Figures D.28 through 
D.31 show the 18 locations, all of which were at 
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Figure D.25 Comparison of normalizing factors for parametric and  
stiffness-based LR/Dm values in cases of symmetric restraint 

 
 
 

Figure D.26  Plot of restraint length in terms of stiffness for asymmetric Case 1.a 
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Figure D.27 Comparison of normalizing factor between parametric and  
stiffness-based values of LR/Dm for asymmetric restraint 

Figure D.28  Critical flaw locations in the hot and cold legs 
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Figure D.29  Critical flaw locations in the crossover leg 

Figure D.30  Critical flaw locations in the surge line 
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Figure D.31  Critical flaw locations in the safety injection system 
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Table D.4  Dimensional and loading conditions for 18 critical locations considered in  
sample plant piping system test cases 

Case Data        

  Location Ri (in) twall (in) 
OD 
(in) Mb (in*lb) Fx 

Temp 
(°F) 

Pressure 
(psi) 

1 14.6 2.37 33.94 12591000 1504000 610 2235 
2 14.6 2.37 33.94 4491000 1504000 610 2235 
3 14.6 2.37 33.94 12435000 1505000 610 2235 
4 15.6 3.15 37.5 15098000 1633000 610 2235 
5 15.6 3.15 37.5 13805000 1597000 542 2200 
6 15.6 2.52 36.24 12632000 1564000 542 2200 
7 15.6 2.52 36.24 13047000 1557000 542 2200 
8 15.6 2.52 36.24 6425000 1684000 542 2200 
9 15.6 2.52 36.24 1086000 1684000 542 2200 
10 15.6 3.18 37.56 5639000 1844000 542 2200 
11 13.85 2.25 32.2 1689000 1388000 542 2300 
12 13.85 2.25 32.2 2398000 1389000 542 2300 
13 13.85 2.25 32.2 2339000 1389000 542 2300 
14 13.85 2.25 32.2 2418000 1386000 542 2300 

Primary 
 System 
  
  
  
  
  
  
  
  
  
  
  
  
  15 13.85 2.36 32.42 2742000 1342000 542 2300 

1 5.754 1.246 14 1545839 221161 653 2327 Surge 
 Line 2 5.754 1.246 14 1766184 234511 617 2327 
SIS 1 2.5945 0.718 6.625 136539 -1083 105 2327 

 
high stress points or at field welds.  Table D.4 
provides the pertinent dimensional and loading 
conditions for these particular locations.  
Because the angular position of the postulated 
leaking flaw was not known, the rotation was  
calculated at 15-degree intervals around the pipe 
circumference at each location.  The largest 
rotation was assumed to correspond with the 
orientation of the flaw, and this rotation was 
used in subsequent calculations.  After 
calculating the pipe stiffness, Equations D.18 
and D.21 were used to determine the restraint 
lengths, and Equations D.3 and D.14 were used 
to calculate the values of rCOD.  Note, Equations 
D.3 and D.18 are for the symmetric restraint 
case and Equations D.14 and D.21 are for the 
asymmetric restraint cases.  While each of the 
cases were asymmetric, the equations for the 
asymmetric case were developed for a specific 
R/t ratio (R/t = 10).  The R/t ratio for each of 
these cases was close to 5, typical of PWR 
piping.  Thus, the symmetric case, which is was 
developed for a wider range of R/t ratios, was 
considered as well.  Further note that prelimi-
nary analyses to date suggest that the effect of 

using the R/t solutions for the asymmetric case 
developed to date for pipes with R/t ratios less 
than 10 (typical of PWR piping) would result in 
a longer crack length for a given leak rate detec-
tion limit capability in an LBB analysis, i.e., a 
conservative assessment of crack length.  Thus, 
the use of the asymmetric solution for these 
sample applications should provide an upper-
bound illustration of the impact of this effect.  
However, if a more generalized asymmetric 
solution is desired, then a curve fit equation 
through multiple finite element analyses is 
needed for different R/t ratio cases.   
 
Once the normalizing factors were obtained, it 
was necessary to calculate the COD of the 
unrestrained pipe.  The SQUIRT program was 
utilized in this endeavor.  The crack morphology 
parameters for an IGSCC crack were assumed.  
Once calculated, CODunres was multiplied by 
rCOD to determine CODres.  On first glance, (see 
Table D.5), the values appear to be so close 
together that any difference would be insignifi-
cant, i.e., less than 10 percent.   
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Table D.5  Comparison between restrained and unrestrained COD values 

 
 SQUIRT Calcs.    Pipe 

System    Normalized Restraint 
Lengths 

 Symmetric Asymmetric 

Symm. 
Rest. 
COD 

Asymm. 
Rest. 
COD 

(Leak 
Rate) Location 

Unrest. 
COD 

Crack 
Length L/Dm L1/Dm L2/Dm  

% diff. 
respect 

to 
unrest. 
COD  

% diff. 
respect 

to 
unrest. 
COD 

   (in) inch    inch   (in) inch 
Primary 1 0.0217 13.33 4.1 0.1 17.9 0.0212 2.5% 0.0217 0.0% 
(5 gpm) 2 0.0178 16.3 11.2 5.8 23.8 0.0175 1.5% 0.0175 2.0% 
 3 0.0216 13.38 11.6 6.4 22.9 0.0214 0.9% 0.0214 1.2% 
 4 0.0203 16.48 15.3 0.3 58.1 0.0201 0.9% 0.0203 0.0% 
 5 0.0147 14.31 11.4 0.8 42.9 0.0146 0.9% 0.0145 1.6% 
 6 0.0154 12.22 16.8 6.5 40.2 0.0154 0.5% 0.0153 0.7% 
 7 0.0156 12.13 29.0 6.9 73.4 0.0156 0.3% 0.0155 0.5% 
 8 0.0136 13.97 20.9 10.0 42.0 0.0135 0.5% 0.0135 0.7% 
 9 0.0088 21.8 18.3 9.9 34.8 0.0087 1.6% 0.0086 2.2% 
 10 0.0126 16.75 38.5 1.0 125.3 0.0126 0.4% 0.0126 0.0% 
 11 0.0112 15.85 4.8 1.0 16.5 0.0107 3.7% 0.0104 6.6% 
 12 0.0124 14.17 7.1 3.6 16.2 0.0121 1.9% 0.0121 2.5% 
 13 0.0123 14.31 9.1 5.6 16.8 0.0121 1.5% 0.0121 1.9% 
 14 0.0125 14.17 9.9 6.1 17.8 0.0123 1.4% 0.0123 1.7% 
 15 0.0126 14.34 5.6 0.1 22.7 0.0123 2.4% 0.0126 0.0% 
Surge 1 0.0257 10.09 22.6 3.0 60.9 0.0252 1.9% 0.0241 6.1% 
(5 gpm) 2 0.0233 9 7.9 0.1 29.0 0.0223 4.0% 0.0231 0.7% 
Surge 1 0.0447 11.79 22.6 3.0 60.9 0.0435 2.8% 0.0405 9.5% 
(10 gpm) 2 0.0392 10.85 7.9 0.1 29.0 0.0367 6.3% 0.0357 8.8% 
 
After studying the cases listed above, it is 
natural to wonder when, if ever, the normalizing 
factor would have a significant effect on the 
COD.  From the previous plots, it can be seen 
that as the crack angle increases, the difference 
between the unrestrained and restrained COD 
values increases.  Referring back to 
Figures D.25 and D.27, it is clear that rCOD 
values for a half-crack angle of π/2 are much 
smaller than those for a half-crack angle of π/8.  
Thus, one condition that must be satisfied in 
order for the effect of restraint of pressure 
induced bending to be significant is the crack 
angle (22) must be relatively large.  For leak-
before-break analyses, this is most likely for 
smaller diameter pipe.  However, as alluded to 
earlier, the L/D analysis developed as part of this 
program is presently limited to pipes with 
moments of inertia greater than 10-4 m4 
(240 inch4).  It can be readily shown that the 
pipe diameter must be at least 10-inch, 
regardless of pipe schedule, for this condition to 

be satisfied1.  While the pipe schedule for 10-
inch diameter pipe must be at least schedule 80.2  
For 10-inch diameter Schedule 160 pipe, the 
leakage crack size from a SQUIRT4 analysis, 
assuming a relatively low operating stress3 of 
0.4Sm (Pm + Pb) is only about 40 percent of the 
pipe circumference for a (1.0 gpm) leakage 
detection system and assuming crack morphol-
ogy parameters for an IGSCC crack4.  If the nor-
mal operating loads are higher, or the leakage 
                                                      
1 The moment of inertia for a 8-inch diameter 
schedule 160 pipe is 7 x 10-5 m4 (166 inch4). 
2 The moment of inertia for a 10-inch diameter 
schedule 80 pipe is 10-4 m4 (245 inch4). 
3 The lower the operating stress, the longer the 
leakage crack size from an LBB perspective. 
4 The relatively coarse leakage detection limit 
(1.0 gpm versus 0.5 gpm) and relatively rough 
crack surface of an IGSCC crack versus a 
fatigue crack both tend to result in longer 
leakage flaw sizes. 
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detection system is better (0.5 versus 1.0 gpm), 
or if the crack surface is not so torturous (fatigue 
versus IGSCC), then the leakage crack size will 
be even shorter.   
 
The other condition, besides large crack angle, 
that must be satisfied in order for the effect of 
restraint of pressure induced bending to be 
significant is that the L/D parameter must be 
small, see Figure D.16.  This is more likely to 
occur for the stiffer (i.e., larger diameter) pipe.  
Thus, the two conditions that must both be satis-
fied for this effect to be significant are to an 
extent mutually exclusive, such that for most 
practical applications, one can probably ignore 
this effect.  The only potentially significant 
applications where one may want to consider 
this effect is very small diameter pipe, less than 
6- or 8-inch diameter.  However, as noted pre-
viously, for these small diameter piping systems, 
the L/D analysis proposed herein that is based 
on rotational stiffness is not valid, or cases 
where one is considering a postulated crack at a 
location where the piping system attaches 
directly to a vessel, e.g., where the surge line 
connects to the pressurizer.  However, that case 
was analyzed as one of the 18 locations already 
considered (Surge 2) and the effect on the COD 
was shown to be minimal.  
 
D.6  Conclusion 
 
The center crack-opening displacement at the 
mid-thickness of a through-wall circumferential 
crack in a straight pipe under end-restraint con-
dition can be evaluated using the crack-opening 
displacement of the corresponding unrestrained 
pipe and the normalizing factor derived in this 
program. 
 
 (D.23) 
 
Analytical expressions for the normalizing fac-
tor, rCOD, have been derived.  It was found that 
Miura’s solution of Equation D.4, combined 
with the revised Ib(θ, Rm/t) function of Equa-
tion D.7, can be used to evaluate rCOD for a 
symmetrically restrained pipe.  A correction 
function (Equation D.14) has been proposed to 
relate the rCOD for an asymmetrically restrained 
pipe to that of the corresponding symmetrically 

restrained pipe.  The validity of these analytical 
expressions has been examined using the COD 
results from the Round-Robin FE analyses 
conducted previously in the BINP program, see 
Appendix I. 
 
In order to apply these equations in a practical 
manner, it was necessary to express the restraint 
length (L/D) in terms of another variable which 
was more easily calculable.  Equations were 
developed relating the restraint length to the pipe 
stiffness.  The results from these equations 
match closely with the previous LR/Dm 
parametric equations, thus validating their 
accuracy.  The expressions for the normalizing 
factor and the restraint length in terms of pipe 
stiffness are semi-empirical in nature, and 
should be used within the range which the 
expressions were derived. 
 
In terms of practical application, it appears that 
effect of restraint of pressure-induced bending is 
negligible in PWR primary piping.  Unless the 
tolerable leak rate is so large that the normal 
operating crack approaches 180 degrees, the 
effect of restraint of pressure induced bending 
on COD is not a factor.  
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